Zebrafish Endzone Regulates Neural Crest-Derived Chromatophore Differentiation and Morphology

نویسندگان

  • Brigitte L. Arduini
  • Glen R. Gallagher
  • Paul D. Henion
چکیده

The development of neural crest-derived pigment cells has been studied extensively as a model for cellular differentiation, disease and environmental adaptation. Neural crest-derived chromatophores in the zebrafish (Danio rerio) consist of three types: melanophores, xanthophores and iridiphores. We have identified the zebrafish mutant endzone (enz), that was isolated in a screen for mutants with neural crest development phenotypes, based on an abnormal melanophore pattern. We have found that although wild-type numbers of chromatophore precursors are generated in the first day of development and migrate normally in enz mutants, the numbers of all three chromatophore cell types that ultimately develop are reduced. Further, differentiated melanophores and xanthophores subsequently lose dendricity, and iridiphores are reduced in size. We demonstrate that enz function is required cell autonomously by melanophores and that the enz locus is located on chromosome 7. In addition, zebrafish enz appears to selectively regulate chromatophore development within the neural crest lineage since all other major derivatives develop normally. Our results suggest that enz is required relatively late in the development of all three embryonic chromatophore types and is normally necessary for terminal differentiation and the maintenance of cell size and morphology. Thus, although developmental regulation of different chromatophore sublineages in zebrafish is in part genetically distinct, enz provides an example of a common regulator of neural crest-derived chromatophore differentiation and morphology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zebrafish pigmentation mutations and the processes of neural crest development.

Neural crest development involves cell-fate specification, proliferation, patterned cell migration, survival and differentiation. Zebrafish neural crest derivatives include three distinct chromatophores, which are well-suited to genetic analysis of their development. As part of a large-scale mutagenesis screen for embryonic/early larval mutations, we have isolated 285 mutations affecting all as...

متن کامل

The Polycomb Group Protein Ring1b/Rnf2 Is Specifically Required for Craniofacial Development

Polycomb group (PcG) genes are chromatin modifiers that mediate epigenetic silencing of target genes. PcG-mediated epigenetic silencing is implicated in embryonic development, stem cell plasticity, cell fate maintenance, cellular differentiation and cancer. However, analysis of the roles of PcG proteins in maintaining differentiation programs during vertebrate embryogenesis has been hampered du...

متن کامل

Pigment pattern formation in zebrafish: a model for developmental genetics and the evolution of form.

The zebrafish Danio rerio is an emerging model organism for understanding vertebrate development and genetics. One trait of both historical and recent interest is the pattern formed by neural crest-derived pigment cells, or chromatophores, which include black melanophores, yellow xanthophores, and iridescent iridophores. In zebrafish, an embryonic and early larval pigment pattern consists of se...

متن کامل

Pax7 is required for establishment of the xanthophore lineage in zebrafish embryos

The pigment pattern of many animal species is a result of the arrangement of different types of pigment-producing chromatophores. The zebrafish has three different types of chromatophores: black melanophores, yellow xanthophores, and shimmering iridophores arranged in a characteristic pattern of golden and blue horizontal stripes. In the zebrafish embryo, chromatophores derive from the neural c...

متن کامل

Pax7 identifies neural crest, chromatophore lineages and pigment stem cells during zebrafish development.

Using immunostaining during early zebrafish embryogenesis, we report that the cranial and trunk neural crest expresses the paired box protein Pax7, thus revealing a novel neural crest marker in zebrafish. In the head, we show that Pax7 is broadly expressed in the cranial crest cells, which indicates that duplication of the paralogous group Pax3/7 at the origin of vertebrates included the conser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008